domingo, 24 de agosto de 2014

Figuras Planas

El cuadrado, el triángulo y el rectángulo son figuras geométricas planas, formadas por líneas rectas cerradas. El círculo también es una figura plana pero a diferencia de las anteriores está formado por una línea curva cerrada. A estas figuras se les llaman planas porque parecieran que estuvieran acostadas sobre el papel.
Vamos a ver algunas de las figuras más conocidas .
El cuadrado:
Tiene cuatro lados iguales. Para dibujar el cuadrado siempre es bueno utilizar una regla milimetrada (con medidas), ya que los cuatro lados tienen que ser de igual longitud. Por consiguiente si sus cuatro lados son iguales sus cuatro ángulos deben ser del mismo tamaño, el cuadrado tiene los ángulos de 90°.       
El triángulo:
El triángulo, como lo dice la palabra "tri", está formado por tres lados y tres ángulos. A toda figura geométrica formada por tres lados sea grande, pequeña, alta, achatada... se le da el nombre de triángulo.
El rectángulo
:
Tiene cuatro lados, y si observas bien, iguales entre sí de dos en dos. Observa la imagen del rectángulo arriba, dos de sus lados son largos (estos están paralelos) comparados con los otros dos que son más cortos (también son paralelos).  
EL círculo:

El círculo tiene varios elementos que se deben tomar en cuenta, el centro, el radio, y la circunferencia de la línea que limita al círculo.




sábado, 23 de agosto de 2014

Geometria, Cálculo, Números y Medidas

La geometría (del latín geometría, que proviene del idioma griego γεωμετρία, geo tierra y metría medida), es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras en el plano o el espacio, incluyendo: puntos, rectas, planos, politopos (que incluyen paralelas, perpendiculares, curvas, superficies, polígonos, poliedros, etc.).

Es la base teórica de la geometría descriptiva o del dibujo técnico. También da fundamento a instrumentos como el compás, el teodolito, el pantógrafo o el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales).

Sus orígenes se remontan a la solución de problemas concretos relativos a medidas. Tiene su aplicación práctica en física aplicada, mecánica, arquitectura, cartografía, astronomía, náutica, topografía, balística, etc. Y es útil en la preparación de diseños e incluso en la elaboración de artesanía.